Rotation-Sensitive Regression for Oriented Scene Text Detection
نویسندگان
چکیده
Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for both tasks, resulting in degraded performance due to the incompatibility of the two tasks. To address this issue, we propose to perform classification and regression on features of different characteristics, extracted by two network branches of different designs. Concretely, the regression branch extracts rotation-sensitive features by actively rotating the convolutional filters, while the classification branch extracts rotation-invariant features by pooling the rotationsensitive features. The proposed method named Rotationsensitive Regression Detector (RRD) achieves state-of-theart performance on three oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17 and COCO-Text. Furthermore, RRD achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.
منابع مشابه
Arbitrary-Oriented Scene Text Detection via Rotation Proposals
This paper introduces a novel rotation-based framework for arbitrary-oriented text detection in natural scene images. We present the Rotation Region Proposal Networks (RRPN), which is designed to generate inclined proposals with text orientation angle information. The angle information is then adapted for bounding box regression to make the proposals more accurately fit into the text region in ...
متن کاملArbitrarily Oriented Scene Text Detection using SMSER and Connected component analysis
In this work, rotation invariant approach has been explored and an effective rotation invariant text detection system has been proposed. In this discrete wavelet transform has been used to get the multi-level feature extraction of the text region as vertical, horizontal and diagonal coefficients provide variation in edge pixels of the text scene image. Further this, detailed and approximation c...
متن کاملFused Text Segmentation Networks for Multi-oriented Scene Text Detection
In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instanceaware segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneous...
متن کاملAggregating Local Context for Accurate Scene Text Detection
Scene text reading continues to be of interest for many reasons including applications for the visually impaired and automatic image indexing systems. Here we propose a novel end-to-end scene text detection algorithm. First, for identifying text regions we design a novel Convolutional Neural Network (CNN) architecture that aggregates local surrounding information for cascaded, fast and accurate...
متن کاملTextBoxes++: A Single-Shot Oriented Scene Text Detector
Scene text detection is an important step of scene text recognition system and also a challenging problem. Different from general object detection, the main challenges of scene text detection lie on arbitrary orientations, small sizes, and significantly variant aspect ratios of text in natural images. In this paper, we present an end-to-end trainable fast scene text detector, named TextBoxes++,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018